2025年4月21日,清华大学 张颢等和微软研究院团队在Journal of Cheminformatics上发表论文Activity cliff-aware reinforcement learning for de novo drug design。 在药物发现领域,全新(de novo)分子设计面临的核心挑战之一是结构-活性关系(SAR)的复杂性,尤其是活性悬崖(activity cliffs)现象——微小的分子结构变化可能导致生物活性的显著差异。 基于AI的全新药物设计通过生成具有特定生物活性的分子,加速了传统药物开发流程。
购买咨询
400-9696-311 转1
问题咨询
400-9696-311 转2
商务合作
400-9696-311 转3
投诉及建议
400-9696-311 转4
关注摩熵医药公众号
随时查阅行业资讯
摩熵医药数据小程序
掌上数据查询系统








浙公网安备33011002015279
本网站未发布麻醉药品、精神药品、医疗用毒性药品、放射性药品、戒毒药品和医疗机构制剂的产品信息
收藏
登录后参与评论
暂无评论